If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/x+(2x-3)/(x-2)+(2-x^2)/(x^2-2x)=0
Domain of the equation: (x^2-2x)!=0
x∈R
Domain of the equation: x!=0
x∈R
Domain of the equation: (x-2)!=0We calculate fractions
We move all terms containing x to the left, all other terms to the right
x!=2
x∈R
((2-x^2)*x*(x-2))/((x^2-2x)*x*(x-2))+(2*(x^2-2x)*(x-2))/((x^2-2x)*x*(x-2))+((2x-3)*(x^2-2x)*x)/((x^2-2x)*x*(x-2))=0
We calculate terms in parentheses: +((2-x^2)*x*(x-2))/((x^2-2x)*x*(x-2)), so:
(2-x^2)*x*(x-2))/((x^2-2x)*x*(x-2)
We multiply all the terms by the denominator
(2-x^2)*x*(x-2))
Back to the equation:
+((2-x^2)*x*(x-2)))
We calculate terms in parentheses: +(2*(x^2-2x)*(x-2))/((x^2-2x)*x*(x-2)), so:
2*(x^2-2x)*(x-2))/((x^2-2x)*x*(x-2)
We multiply all the terms by the denominator
2*(x^2-2x)*(x-2))
Back to the equation:
+(2*(x^2-2x)*(x-2)))
We calculate terms in parentheses: +((2x-3)*(x^2-2x)*x)/((x^2-2x)*x*(x-2)), so:
(2x-3)*(x^2-2x)*x)/((x^2-2x)*x*(x-2)
We multiply all the terms by the denominator
(2x-3)*(x^2-2x)*x)
Back to the equation:
+((2x-3)*(x^2-2x)*x))
| 0.2^x=4 | | 9(j+63)=45 | | 2s+s-5+s+13=180 | | x2-5x-2=0 | | 3x^2-96x=0 | | 3x+3(4x-3)=96 | | 6(-x/6)=1 | | 6x-2x+11=5 | | 0.4y+2.9=1.5 | | 4^(1+2x)=1024 | | x2-9x-5=0 | | 8v+2-6v=9+v | | 4(3x+2)-11=8 | | 2+6g=11=3g | | 5(x—3)+22=57 | | -9=-4w | | 3x+8-x=2x+1 | | -12=-3/5v | | x2+2x-360=0 | | t−23.5=−39.7 | | -3(q+38)=-21 | | 2(x-4)=4x3x+6 | | -4+2k=-6(-6-2k) | | 4x+7=2x+8-5 | | (3x-13)+(x-3)=180 | | (4n+17)+(3n+16)=180 | | x−(−7)=5 | | 3x^2+1=73 | | 5x2-10x=0 | | 5x-8+1=-4x-7+7x | | 10=6=2u | | 162-12y/24+4y=43 |